UV Water Disinfection in Rural Households – Results from a Rigorous Evaluation

Fermin Reygadas
Fundación Cántaro Azul, Executive Director
Ashoka Fellow
fermin@cantaroazul.org

Symposium on UV Disinfection in Developing Countries
Delft, The Netherlands, November 6th 2014
Outline:

- Context and motivation for UV disinfection
- Design of a UV system for rural households
- Field efficacy evaluation
- Adoption and sustained use evaluation
- Research and practice conclusion
Rural Mexico
2Tovar, R. et al. 2005; 3Reygadas, F. et al. 2007; Photo Credit: Moreno, E. & Fundacion Cantaro Azul
Practice Goals

• Design an effective, low-cost, and user-friendly ultraviolet disinfection system.

• Formulate an implementation program that supports the adoption and sustained use of the water disinfection system.
Research Questions

Field Efficacy
• Is ultraviolet disinfection at the household level an efficacious method for improving the quality of drinking water?
 (EPA, Colford)

Adoption and Use
• What levels of adoption and use can be achieved with ultraviolet disinfection at the household level?
 (Colford, Hunter, Luby)
Outline:

• Context and motivation for UV disinfection

• **Design of a UV system for rural households**

• Field efficacy evaluation

• Adoption and sustained use evaluation

• Research and practice conclusion
Mesita Azul: Water Disinfection at the Household Level

- Operates at fast flow rate of 5 liters / minute
- Easy to use and does not change taste of water
- Requires electricity, clear water, and safe storage

Baffle homogenizes flow

15W UV lamp
Laboratory Efficacy of the Mesita Azul

- **UV dose of Mesita Azul:** $1,224 \pm 66$ J/m² (95% CI)

 - Inactivates bacteria, viruses, and protozoa
 - Meets the highly protective target of the WHO guidelines for HWT
 - Delivers high germicidal dose, providing a safety margin\(^1\)

\(^1\) Brownell et al.
Mesita Azul Program

Needs Assessment

Community Presentation

Installation

Follow Up Visits
Design Process: Mesita Azul

UV dose from 900 to 1,200 J/m²
Outline:

• Context and motivation for UV disinfection
• Design of a UV system for rural households

Field efficacy evaluation

• Adoption and sustained use evaluation
• Research and practice conclusion
Field Efficacy Research Questions:
Is ultraviolet disinfection at the household level an efficacious method for improving the quality of drinking water?

• Do households gain access to safe water by using the Mesita Azul?

• What factors drive water contamination at the household?
Study Location
Research Design:
Stepped-Wedge Cluster Randomized Trial

<table>
<thead>
<tr>
<th>Clusters</th>
<th>Baseline</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
<th>Step 5</th>
<th>Step 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>0</td>
<td>X 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5-8</td>
<td>0</td>
<td>0</td>
<td>X 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9-12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13-16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17-20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X 0</td>
<td>0</td>
</tr>
<tr>
<td>21-24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X 0</td>
</tr>
</tbody>
</table>

0 = Observation
X = Intervention

Before Intervention
After Intervention
Water Quality Analysis:
Estimated the concentration of *E. coli* with Idexx’s Colilert-18 and its Quanti-Tray 200 most probable number method
Do households gain access to safe water by using the Mesita Azul?

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Mesita Azul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>542</td>
<td>528</td>
</tr>
<tr>
<td>Proportion of EC ≥ 1</td>
<td>0.57</td>
<td>0.29</td>
</tr>
<tr>
<td>Risk Difference (95% CI)</td>
<td>-0.28 (-0.34, -0.23)</td>
<td></td>
</tr>
</tbody>
</table>

EC = E. coli (CFU/100ml)

- EC=[0,1)
- EC=[1,10)
- EC=[10,100)
- EC=[100,9000)
Water Quality Assessment: Treatment to Consumption

![Bar chart showing water quality assessment](chart.png)
Model of Water Contamination at the Household

Source

Treatment

Hygiene

Storage

Extraction

Washing
Model of Water Contamination at the Household: Presence of *E. coli*

<table>
<thead>
<tr>
<th>Process</th>
<th>Independent Variable</th>
<th>% of 619 Obs.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washing</td>
<td>Used disinfected water?</td>
<td>18%</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>Used bleach or soap?</td>
<td>62%</td>
<td>1.32</td>
</tr>
<tr>
<td>Treatment</td>
<td>Does the MA work?</td>
<td>97%</td>
<td>0.26*</td>
</tr>
<tr>
<td></td>
<td>Is the operator an expert?</td>
<td>29%</td>
<td>0.61*</td>
</tr>
<tr>
<td>Storage</td>
<td>Time since filled container</td>
<td><3d=68%</td>
<td>0.81*</td>
</tr>
<tr>
<td></td>
<td>Is container covered?</td>
<td>98%</td>
<td>0.53</td>
</tr>
</tbody>
</table>

(* = Statistically significant association at the 95% CI level.)
Model of Water Contamination at the Household: Presence of *E. coli*

<table>
<thead>
<tr>
<th>Process</th>
<th>Independent Variable</th>
<th>% of 619 Obs.</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction</td>
<td>Number of extractions (x10)</td>
<td>≥10L=62%</td>
<td>0.84*</td>
</tr>
<tr>
<td></td>
<td>Extraction with pump?</td>
<td>50%</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>Extraction with spigot?</td>
<td>43%</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>Is drinking vessel used?</td>
<td>85%</td>
<td>1.91*</td>
</tr>
<tr>
<td>Hygiene</td>
<td>Improved hh infrastructure?</td>
<td>88%</td>
<td>0.36*</td>
</tr>
<tr>
<td></td>
<td>Good hygiene in kitchen?</td>
<td>86%</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>Hand washing station?</td>
<td>20%</td>
<td>1.38</td>
</tr>
</tbody>
</table>

(* = Statistically significant association at the 95% CI level.)
Outline:

• Context and motivation for UV disinfection
• Design of a UV system for rural households
• Field efficacy evaluation

• Adoption and sustained use evaluation

• Research and practice conclusion
Adoption and Use Research Question:

- What levels of adoption and use can be achieved with ultraviolet disinfection at the household level?
Developed Compliance Framework that Maps Key HWT Outcomes:

<table>
<thead>
<tr>
<th>Adoption of Safe Water Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of Safe Water Practice</td>
</tr>
<tr>
<td>Access to Safe Water</td>
</tr>
<tr>
<td>Habit of Safe Water Practice</td>
</tr>
<tr>
<td>Exclusive Use of Safe Water</td>
</tr>
</tbody>
</table>

26
Disaggregated Key Outcomes:

Adoption of Safe Water Practice
- Acquisition
- Acq. Agreement

Knowledge of Safe Water Practice
- Procurement
- Consumption

Access to Safe Water
- Procurement
- Consumption

Habit of Safe Water Practice
- Procurement
- Consumption

Exclusive Use of Safe Water
- Procurement
- Consumption
- HH vs. Community
Adapted Compliance Framework to the Mesita Azul Program:

Adoption of Safe Water Practice

<table>
<thead>
<tr>
<th>Procurement</th>
<th>Mesita Azul (MA) was installed in household</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acq. Agreement</td>
<td>Paid contribution in full</td>
</tr>
</tbody>
</table>

Knowledge of Safe Water Practice

<table>
<thead>
<tr>
<th>Procurement</th>
<th>Operator has minimum basic knowledge and skills in using MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>Interviewee differentiates treated and safely stored sources from others</td>
</tr>
</tbody>
</table>

Access to Safe Water

<table>
<thead>
<tr>
<th>Procurement</th>
<th>MA is present at accessible location and in working condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>Water treated with MA and safely stored (SS) is present at time of visit</td>
</tr>
</tbody>
</table>

Habit of Safe Water Practice

<table>
<thead>
<tr>
<th>Procurement</th>
<th>Uses MA to treat water at least once every five days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>MA-SS is most common source & Last glass served from MA+SS</td>
</tr>
</tbody>
</table>

Exclusive Use of Safe Water

<table>
<thead>
<tr>
<th>Procurement</th>
<th>Not documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>Has only consumed water from MA-SS in past 7 days</td>
</tr>
<tr>
<td>HH vs. Community</td>
<td>Not documented</td>
</tr>
</tbody>
</table>
Outline:

- Context and motivation for UV disinfection
- Design of a UV system for rural households
- Field efficacy evaluation
- Adoption and sustained use evaluation

• Research and practice conclusion
Field Efficacy Research Conclusions:

- Do households gain access to safe water by using the Mesita Azul? Yes, but there is the potential for larger gains.

- What factors drive water contamination at the household? In the case of the Mesita Azul:

 Treatment
 Drinking Vessel
 Hygiene
Adoption and Use Research Conclusions:

- What levels of adoption & use can be achieved with UV disinfection? *Adoption & sustained use significantly higher than alternatives. But also significant drop between adoption & sustained use.*
Need for a Paradigm Shift from Product to Service-based HWT Programs
UV Water Disinfection in Rural Households – Results from a Rigorous Evaluation

Fermin Reygadas
Fundación Cántaro Azul, Executive Director
Ashoka Fellow
fermin@cantaroazul.org

Symposium on UV Disinfection in Developing Countries
Delft, The Netherlands, November 6th 2014

Acknowledgments
Joshua Gruber, Mike Fisher, Isha Ray, Kara Nelson, Jack Colford (UC Berkeley)
Ian Balam, Cintia Landa, Hector Castelan, Saul Higuera (Cántaro Azul)

Funding Partners
Sustainable Products and Solutions Program, UC Berkeley
Consejo Nacional de Ciencia y Tecnología, Mexico
Blum Center for Developing Economies, UC Berkeley
UV Disinfection in Schools and Community Kiosks
Why are issues at the intersection of water, health, and development particularly hard to solve?

• Very limited feedback on waterborne health risks
• Complex epidemiological relation between water and health
• Water touches most aspects of our lives
• Mismatch in dimensions of value between designers and end-users
Can household water treatment play a significant role in addressing these water, health, and development issues?

• HWT can empower end-users, but also transfers burdens
• These burdens have limited the sustained use of HWT products
• Narrow focus on drinking water at the HH => poor compliance
• Need new paradigm, from product to service-based HWT programs