Education and Training Guide 2017

MSc Programmes
PhD Programme
Online & Short Courses

UNESCO-IHE
Institute for Water Education
In 2016, the United Nations adopted the 2030 Agenda, including 17 Sustainable Development Goals. Goal 6, ensuring availability and sustainable management of water and sanitation for all, shows the importance placed on the world’s water resources. Moreover, most of the 16 other Goals relate in some way to water, ranging from combatting desertification to food production and urban resilience. The SDGs place water very high on the political agenda, with the consequence that many skilled professionals are needed to tackle the challenges ahead.

Furthermore, the United Nations’ World Water Development Report “Water and Jobs”, published on World Water Day 2016, states that skills, qualities and capacities of employed human resources are vital for the successful performance of the water sectors. To meet the urgent water challenges, there is an ever expanding range of expertise needed including water resources management, building and managing water infrastructure and the provision of water-related services. UNESCO-IHE educates those who already work in these water sectors, giving them the chance to broaden or deepen their expertise and thereby improve their career prospects. The Institute also welcomes students who wish to change their career path, provided they meet the eligibility requirements, since increasingly a variety of skills and a range of backgrounds are beneficial for the water sectors.

UNESCO-IHE combines Delft and Dutch water know-how with the wealth of knowledge of its staff, its global network and the experiences of the students. The result is a personal and international environment, supporting the student on an inspiring and enriching journey to become part of the biggest global water family.

Since its establishment in 1957, the Institute has educated over 14,500 scientists, engineers and decision-makers representing more than 160 countries. Alumni reach senior positions in their home countries and become nationally and internationally recognised experts in their fields of speciality.

We look forward to welcoming you as a student at UNESCO-IHE to work towards a better, safer and more sustainable 2030.
Delft, Netherlands, Europe

A HOME IN THE HEART OF EUROPE

Delft is known for its historic town centre with canals, Delft Blue pottery, painter Johannes Vermeer and scientist Antony van Leeuwenhoek and its association with the royal House of Orange-Nassau.

Since Delft is a university city, there are plenty of cultural events to be enjoyed throughout the year, as well as museums and theatres. There is also an abundance of cafés and restaurants, catering to every taste and making time spent away from your studies an experience in itself.

Water has always played an important role in both the Netherlands’ and Delft’s history and continues to do so today. Therefore, it is no surprise that many science and technology organizations related to water have chosen Delft as their home base. UNESCO-IHE maintains close working relationships with various Delft-based research and education institutes, such as the Delft University of Technology, Deltares and the Delfland Water Board.

Delft is well connected to the Dutch public transport system, making The Hague, Rotterdam, Schiphol International Airport and Amsterdam easily accessible. It is a great location to start exploring other places of interest, both within the Netherlands and Europe.

HOUSING

Delft is a university city, and therefore accommodation is scarce and expensive. This is why UNESCO-IHE provides fully furnished accommodation in Delft for all students of the Institute’s programmes, available upon arrival and for the duration of the study period.

THE INSTITUTE’S FACILITIES AND SERVICES

- 14,000 m² premises, including three interconnected buildings;
- Four modern teaching and research laboratories - aquatic ecology, microbiology, process technology and analytical laboratories - including state of the art instrumentation;
- A library with online connections to national and international resource centres, and a reading room containing many international journals and magazines;
- Modernised classrooms and multifunctional lecture theatres;
- A fully equipped auditorium seating 500 and a videoconferencing studio;
- Notebooks for all participants and extensive computing facilities;
- Flexible and group work-spaces, notebooks lockers;
- A restaurant offering a wide variety of meals and snacks;
- Social and cultural activities, sports facilities and events;
- International student health and counselling services;
- An in-house prayer and meditation room.

UNESCO-IHE is located in the historical centre of Delft, a city of great charm characterized by ancient canals, beautifully kept monuments and historic squares. It is also an ideal starting point to explore the Netherlands and Europe.

YOUR INTERNATIONAL EXPERIENCE

Staff at the Institute simplify your transition to the Netherlands by organizing the annual ‘Introduction Days’. In these two weeks, they help you deal with various formalities such as residence permits, health insurance and bank accounts. Other activities during this period are an excellent way for new students to meet one another and receive the friendship and advice of senior students and the Institute’s staff.

Throughout your study period, UNESCO-IHE organizes many social, cultural and sports events, allowing you to get the most out of your free time. Every year, trips are organized that stimulate you to discover Dutch culture, Delft, the Netherlands and Europe.

Water has always played an important role in both the Netherlands’ and Delft’s history.

THE INSTITUTE’S FACILITIES AND SERVICES

- 14,000 m² premises, including three interconnected buildings;
- Four modern teaching and research laboratories - aquatic ecology, microbiology, process technology and analytical laboratories - including state of the art instrumentation;
- A library with online connections to national and international resource centres, and a reading room containing many international journals and magazines;
- Modernised classrooms and multifunctional lecture theatres;
- A fully equipped auditorium seating 500 and a videoconferencing studio;
- Notebooks for all participants and extensive computing facilities;
- Flexible and group work-spaces, notebooks lockers;
- A restaurant offering a wide variety of meals and snacks;
- Social and cultural activities, sports facilities and events;
- International student health and counselling services;
- An in-house prayer and meditation room.

UNESCO-IHE is located in the historical centre of Delft, a city of great charm characterized by ancient canals, beautifully kept monuments and historic squares. It is also an ideal starting point to explore the Netherlands and Europe.

YOUR INTERNATIONAL EXPERIENCE

Staff at the Institute simplify your transition to the Netherlands by organizing the annual ‘Introduction Days’. In these two weeks, they help you deal with various formalities such as residence permits, health insurance and bank accounts. Other activities during this period are an excellent way for new students to meet one another and receive the friendship and advice of senior students and the Institute’s staff.

Throughout your study period, UNESCO-IHE organizes many social, cultural and sports events, allowing you to get the most out of your free time. Every year, trips are organized that stimulate you to discover Dutch culture, Delft, the Netherlands and Europe.

Water has always played an important role in both the Netherlands’ and Delft’s history.
A Network for Life

ALUMNI NETWORK

Today, several ministers, heads of water-related institutions and top scientists around the globe are UNESCO-IHE graduates.

After graduation, you will be part of the largest partnership network of water professionals in the world. UNESCO-IHE will continue to facilitate the communication between you, your former classmates, and the Institute. You will receive news about the Institute and the water sector on a regular basis through e-zines. You are invited to join an Alumni Association in your country, independent associations where you can meet fellow alumni and enjoy social and professional activities.

With a UNESCO-IHE degree you will have made a major step in your professional career. Many alumni reach prominent positions in which strategic, managerial, policy and decision-making components become major responsibilities of their functions. You will, over time, wish to keep your skills and knowledge up-to-date, stay up to date with changing professional demands. To cater to this need, the Institute’s refresher seminars are held annually in different continents, covering themes of direct relevance to these regions. Also, alumni are entitled to discounts on the tuition fee for attending UNESCO-IHE short and online courses, and purchasing publications.

MAKE UNESCO-IHE YOUR NETWORK

UNESCO-IHE acts as a hub for partnerships and networks across the globe, linking global knowledge to local sector agendas. The Institute collaborates with an extensive range of public and private partners, comprising a wide range of fields and technical cooperation in human and institutional capacity building. These partners are at the international, United Nations, EU and national level. They include education and research institutes, knowledge centres, the (Dutch) Water Sector, funding agencies, NGOs and governmental organizations. These partnerships add value to many of the Institute’s activities.

The Institute maintains close working relationships with many regional and local networks, platforms transferring scientific and technical expertise and strengthening the capacity of water professionals and institutions. Many of these networks are thriving professional communities, encouraging joint research, knowledge sharing and the development of sustainable water solutions.

As a student, you profit from the professional contacts the Institute has made during its half century of existence. When studying at UNESCO-IHE, you can expect to meet leading figures from the international water arena. Your professors and lecturers will put your study in the context of global dialogues and targets such as the Sustainable Development Goals.

Studying at UNESCO-IHE is a life-changing experience. You will be exposed to an intercultural environment characterized by plurality and diversity of ideas, experiences and disciplines resulting in intellectual, professional and personal growth.

www.unesco-ihe.org/welcome
The MSc curricula are geared towards supporting a greater understanding of sustainable development and the inherent challenges in achieving that. In the programmes, a mix of modern knowledge transfer methods includes lectures, workshops, role-play, games, study tours, and field visits. Teaching staff and students come from all over the world and partnerships with related institutes and universities play an important role in teaching. The educational environment can therefore be called truly international; it is characterized by pluralism and diversity and stimulates students, while progressing in their studies, to develop communication skills that will enable them to disseminate their professional knowledge and skills effectively.

The Delft-based MSc specializations start in October and take 18 months, of which the first year consists of taught modules that are given at UNESCO-IHE in Delft. After successful completion of the taught modules, you will do individual research for a six-month period. The research deals with a practical or theoretical problem and may be carried out in collaboration with an organization outside the Netherlands, for example in the home country. Often, field data collection, laboratory or computer analysis work are part of the research. Research is always completed with a thesis and a public presentation of results.

The so-called joint programmes are MSc specialisations developed with and offered in collaboration with partner institutes. These joint programmes have varying start and end dates, and part of the programme is given at a partner institute in another country.

T-SHAPE COMPETENCY PROFILE

Effective problem solving in the field of water and environment requires knowledge-based competence from the physical sciences, water engineering, and/or the social sciences. The MSc curricula provide you with the so-called T-shape competency profile, which enables you to cooperate within teams unifying various disciplines. The vertical bar of the T stands for a specialist deep knowledge-based competence. The horizontal bar represents preliminary or working knowledge and skills from neighbouring disciplines, and also general academic skills, communication competencies and other professional skills. Thus, team members who each bring their respective specialist knowledge are able to ‘embrace’, i.e. sufficiently understand, each other in interdisciplinary problem solving.

UNESCO-IHE offers four accredited Master of Science programmes, with a total of 17 specializations. The MSc Programmes educate students primarily from developing countries and countries in transition, as well as students from developed countries with a strong interest in water and development, to become creative problem solving professionals in the field of water and environment.

For extra information on these programmes please see pages 14-22.

www.unesco-ihe.org/master
UNESCO-IHE INTERNATIONAL GRADUATE SCHOOL IN WATER AND DEVELOPMENT

Sustainable water use is frequently characterised by complex, so-called ‘wicked’, problems where traditional assumptions of knowability, causality and predictability may not apply. The fundamental importance of better connection between science, policy and society makes new demands on PhD graduates, who are increasingly expected to possess, not only a deep knowledge of their own discipline, but are additionally capable of placing that knowledge in a wider understanding of societal needs.

UNESCO-IHE is well placed to play a significant role in supporting PhD level education that is targeted to water related problems, not only in the global south and countries in transition, but in an increasingly globalised world.

In 2015 UNESCO-IHE established the Graduate School in Water and Development, to create a hub for a vibrant and an intellectually exciting research and development environment at the heart of the Institute. The fellows meet, work together and plan their own activities, including an event filled PhD week in September each year. UNESCO-IHE is a partner member of SENSE (Research School for Socio-Economic and Natural Sciences of the Environment), a national research school in the Netherlands, which connects more than 10 universities and research institutes. The aim of SENSE is to educate and train PhD fellows in disciplinary and multidisciplinary environmental issues, to promote scientific research on environmental change, and to support society and policy makers with independent and scientifically based expert advice.

Research is conducted by the following academic departments and chair groups:

13 Chair Groups

- Water Supply Engineering
- Pollution Prevention & Resource Recovery
- Sanitary Engineering
- Water Management
- Water Governance
- Hydroinformatics
- Knowledge & Capacity Development
- Land & Water Development
- Aquatic Ecosystems
- Hydrology & Water Resources
- Coastal Systems, Engineering & Port Development
- Land & Water Development
- Flood Resilience
- Safe Drinking Water & Sanitation
- Water & Sanitation

UNESCO-IHE is a member of the Research School for Socio-Economic and Natural Sciences of the Environment (SENSE). This Dutch research school focuses on both the natural sciences and socio-economic fields of environmental research. SENSE is accredited by the Royal Netherlands Academy of Sciences (KNAW), and brings together excellent academic research groups from nine universities and research centres.

www.unesco-ihe.org/phd
Online and Short Courses

UNESCO-IHE aims to make water education accessible to an increasing number of students and professionals. The Institute achieves this by providing online and short courses, tailor-made training, a diploma programme and open courseware on a wide array of topics.

ONLINE COURSES
UNESCO-IHE offers high quality online courses in some of the topics of significance in the water sector. The online courses are beneficial to professionals working in public and private institutions, NGOs, and academic institutions, and are ideal for professionals with jobs and families, who want to upgrade their skills from the comfort of their home or office. Each online course’s total study load is 140 hours. A four month course thus takes around 8 hours of work per week. The guidance by lecturing staff during these online courses is intensive, and there are many opportunities to get feedback from and interact with fellow participants.

The web-based Moodle eCampus is used to disseminate training material and for communication. It contains learning tools such as presentations, videos featuring case studies from various countries, interviews with experts, quizzes and audio material as well as a discussion area where fellow participants and lecturers can meet each other. All courses run completely via eCampus, but course materials can be sent on CD as well.

For a list of online courses in 2017, see page 23.

SHOR T COURSES
UNESCO-IHE conducts a wide range of short, intensive and highly specialized courses which are aimed at upgrading and refreshing the knowledge and skills of mid-career and senior experts. They are meant for professionals - or groups of professionals - with a specific area of interest and a limited amount of time.

Short courses usually are one to three weeks in length. The focus and content vary from specialized and technical matters to challenges and approaches in management. Didactical methods used in these short courses include lectures, individual or group exercises in the classroom, at the computer, or in the laboratory. Fieldwork, excursions and field visits to relevant institutions are often part of a short course, allowing the participants to experience practical examples of the theory offered. Through case studies, role-play and workshops, content is made more interactive, and know-how of participants is shared.

For a list short courses in 2017, see page 24-25.

TAILOR-MADE TRAINING
Tailor-made courses are designed for clients whose staff require training on specific topics or seek to develop a common knowledge base to address future challenges. The focus of the courses can be technical, managerial, strategic or operational, depending on the client’s priorities.

The training can be organized for groups of various sizes, from one or multiple organizations, sectors or regions. The trainings can vary in length and depth, ranging from a course lasting several days, to a tailor-made MSc programme in which regular components are mixed with case studies and modules requested by the client. Training can be delivered on-site or using UNESCO-IHE in Delft as a base, or a combination of the two. A mixture of training techniques are utilized in creating tailor-made trainings, including lectures, workshops, role-plays, case studies and study tours to project sites throughout Europe or the region where the training takes place.

For advice on how UNESCO-IHE could be of service to your organization, contact UNESCO-IHE’s Liaison Office. Their contact information is available from the website.

PROFESSIONAL DIPLOMA PROGRAMME
The Graduate Professional Diploma Programme (GPDP) in Sanitation and Sanitary Engineering disseminates relevant knowledge and know-how to professionals who do not have the means or time to pursue a full-time Master’s course in that subject, or who already have an MSc Degree in a related field and wish to specialize.

In the programme you will follow a sequence of four to five online courses, regular short courses or a combination of both. To ensure that the programme fits your personal circumstances, you select the courses of interest and a personal study plan will be designed in collaboration with a study advisor. The total duration of the programme depends on this study plan and varies between 1.5 to a maximum of 4.5 years.

For extra information on these tracks and courses, see page 23.

OPEN COURSEWARE
UNESCO-IHE freely provides online educational materials, including recorded lectures and downloadable materials such as course notes, exercises, tools and public domain software on a wide variety of topics.

For a list of open courseware courses, see page 24-25.

ECTS
It is possible to earn European Credit Transfer System (ECTS) points for several online and short courses. For the latest information on earning ECTS points, including regulations and costs, please refer to our website (link below).

DISCOUNTS
The following discounts on the tuition fee of online and short courses are offered:
• 30%: UNESCO-IHE alumni
• 10%: UN family staff members
• 10%: groups of 5 or more (provided that the courses start at the same time and a group application has been sent)
A Guide to our MSc Programmes

The Delft-based MSc Programmes start in October and take 18 months. The first year consists of taught modules and after successful completion of these modules, you will do individual research for a six-month period. You can apply to the programmes throughout the year, but make sure you apply well before the deadline of 1 August, so you will have time to make the financial arrangements and prepare for your studies at UNESCO-IHE.

APPLICATION
Apply online at our website. For Frequently Asked Questions see: www.unesco-ihe.org/faq.

ADMISSION
Admission requirements:
- BSc Diploma in a related field of study
- English Language (IELTS: 6.0 / TOEFL iBT: 87 overall or PBT: 502/TWE 4.5)
- Two or more years of work experience in a related field is preferred

SCHOLARSHIPS
Attention: most scholarship programmes have a deadline much earlier than August 1, see website: www.unesco-ihe.org/fellowships

JOINT PROGRAMMES
Joint programmes have varying start and end dates, and part of the programme is given at a partner institute, often in another country/continent. See website for more information.

STAY FRESH
UNESCO-IHE promotes Life Long Learning: After a few years, enrol in a refresher course, or a short or online course.

APPLICATION DEADLINE
1st of August

RESEARCH
The research deals with a practical or theoretical problem and may be carried out in collaboration with an organization outside the Netherlands, for example in the home country.

INTENSIVE LEARNING
Due to the breadth and depth of subjects covered in the MSc programmes, please be advised that in particular the 12 month taught part is intensive. We advise students to prepare themselves for a challenging, but rewarding educational experience.

Follow a PhD Programme - 4 years (see page 8)
Resume or start your work in the water sector

JOIN THE UNESCO-IHE ALUMNI COMMUNITY!
Develops the necessary skills to contribute to a sustainable and innovative future for the protection and management of water and natural resources.

Integrating science, technology and policy making

As the world enters a period of increasing pressures that cause impact on the environment and human well-being, future sustainable development needs to be informed by science and empirical evidence, be linked to technological developments and effective policies. The Environmental Science MSc programme brings the necessary means to meet the environmental challenges in an integrated way. Each of the programme’s specialisations provides the essential in-depth knowledge that links with a broader skills base, so that graduates of the programme can play their part in a sustainable and innovative future for protection and management of water and natural resources.

The unsustainable management of natural resources hampers human development

Suitable academic backgrounds include a BSc or MSc in natural sciences, environmental science, agriculture, geography, environmental economics and planning & management.

Learning Objectives

After successfully completing this specialization, graduates will be able to:
- Use scientific data and results as a basis for policymaking.
- Analyse the complex and dynamic interactions between humans and their environment.
- Understand the role of governmental policy (at municipal, provincial, national, regional and global levels) in order to achieve sustainable development.
- Apply a critical attitude and effective communication skills for knowledge and understanding.
- Apply professional techniques and procedures for environmental planning.
- Apply principles of environmental policymaking, environmental legislation and institutional arrangements.
- Contribute to the development of environmental policy plans at various levels (company, municipality, national and international).

This specialization is also offered as a joint programme, with Universidade Del Valle, Colombia.

Desired profile

Admission is open to all suitably qualified applicants with a focus and interest to meet future water environmental challenges in the developing world and countries in transition. The programme is intended for students and professionals with an interest in environmental sciences and in maintaining environmental integrity to support human development. Suitable academic backgrounds include a BSc or MSc in natural sciences, environmental science, agriculture, geography, environmental economics, planning and management or engineering. Professional experience in a relevant area is desirable.

Basic knowledge of mathematics, physics and chemistry is a prerequisite.

Computer literacy is a valuable asset.

Good conversational, reading and writing capabilities in the English language are essential in order to successfully complete the course.

CAREER

Graduates of the Environmental Science programme start or resume careers in policy-making and research and/or development, teaching, environmental protection and management, enforcement and public administration, management, policy-making and decision-making, water pollution and sediment management, professional and management consulting, NGOs and governmental organizations.

SPECIALIZATION IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY

You will be introduced to research and development, policy-making and decision-making in the environmental area.

Prospective Students

The programme is intended for students and professionals who are interested in an interest in the development and application of technologies that contribute to maintain environmental integrity in relation to human development. Suitable academic backgrounds include a BSc or MSc in natural sciences, environmental science, agriculture, geography, environmental economics and planning & management.

Learning Objectives

After successfully completing this specialization, graduates will be able to:
- Design, organise and conduct scientific environmental research, and contribute to the development of innovative technologies for solving environmental problems.
- Analyse dynamic interactions in complex human-technological-environmental systems.
- Formulate research statements and data collection strategies and design, and apply conceptual and computational frameworks for a better understanding of these systems.
- Provide scientific advice for policy development and decision-making.
- Apply scientific attitude and effective communication skills for knowledge and understanding.

This specialization is a joint programme offered with the Asian Institute of Technology.

SPECIALIZATION IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY AND ENGINEERING

You will be introduced to research and development leading to technologies that address environmental problems, and to learn and interact with stakeholders, managers and policy makers in order to identify appropriate remedial actions.

Prospective Students

The programme is intended for students and professionals who are interested in an interest in the development and application of technologies that contribute to maintain environmental integrity in relation to human development. Suitable academic backgrounds include a BSc or MSc in natural sciences, environmental science, agriculture, geography and engineering.

Learning Objectives

After successfully completing this specialization, graduates will be able to:
- Design, organise and conduct scientific environmental research, and contribute to the development of innovative technologies for solving environmental problems.
- Analyse dynamic interactions in complex human-technological-environmental systems.
- Formulate research statements and data collection strategies and design, and apply conceptual and computational frameworks for a better understanding of these systems.
- Provide scientific advice for policy development and decision-making.
- Apply scientific attitude and effective communication skills for knowledge and understanding.

This specialization is a joint programme offered with the Asian Institute of Technology.

SPECIALIZATION IN ENVIRONMENTAL TECHNOLOGY AND ENGINEERING

You will be introduced to research and development leading to technologies that address environmental problems, and to learn and interact with stakeholders, managers and policy makers in order to identify appropriate remedial actions.

Prospective Students

The programme is intended for students and professionals who are interested in an interest in the development and application of technologies that contribute to maintain environmental integrity in relation to human development. Suitable academic backgrounds include a BSc or MSc in natural sciences, environmental science, agriculture, geography and engineering.

Learning Objectives

After successfully completing this specialization, graduates will be able to:
- Design, organise and conduct scientific environmental research, and contribute to the development of innovative technologies for solving environmental problems.
- Analyse dynamic interactions in complex human-technological-environmental systems.
- Formulate research statements and data collection strategies and design, and apply conceptual and computational frameworks for a better understanding of these systems.
- Provide scientific advice for policy development and decision-making.
- Apply scientific attitude and effective communication skills for knowledge and understanding.

This specialization is a joint programme offered with the Asian Institute of Technology.
Joint programme
Study Information

Joint Erasmus Mundus programme

• Will be able to conduct academic research independently.

• Can place their profession in the wider social, economic and environmental
 contexts of urbanisation and municipal water and infrastructure services.

• Will be able to contribute to the development of innovative approaches to
 the provision of sustainable and equitable municipal water, sanitation,
 environmental and infrastructure services in developing and transitioning
 countries.

• Will be able to conduct academic research independently.

MSc PROGRAMME IN URBAN WATER AND SANITATION

Educates professionals in the fields of water supply, sanitation and integrated urban engineering, particularly in urban areas.

Recent decades have witnessed an increasing rate of urbanisation, particularly in developing regions and in countries in transition. About 85% of the world’s megacities can be found in these regions. The high concentration of people in urban areas will place enormous pressure on the local environment and on available resources. It will also generate ever higher, sometimes conflicting demands on services such as water supply and sanitation. At the same time, under decentralisation policies, the responsibility for delivering such services will be increasingly delegated to lower levels of government that are often ill-equipped for this challenge in terms of financial and human resources.

The MSc Programme in Urban Water and Sanitation educates professionals in the fields of water supply, sanitation and water engineering and management, particularly in urban areas. Once they have successfully completed this programme, graduates:

• Can place their profession in the wider social, economic and environmental
 contexts of urbanisation and municipal water and infrastructure services;

• Will be able to contribute to the development of innovative approaches to
 the provision of sustainable and equitable municipal water, sanitation,
 environmental and infrastructure services in developing and transitioning
 countries;

• Will be able to conduct academic research independently.

SPECIALIZATIONS

SPECIALIZATION IN SANITARY ENGINEERING

You will learn to deal with wastewater and sludge treatment process operation, maintenance and design, including urban drainage and sewerage, centralised and decentralised systems and land-based engineered treatment plants.

Prospective Students

This specialisation is designed for students and professionals interested in achieving and maintaining the environment and public health. It is particularly relevant to those who are or wish to become involved in the provision of sanitation services. Suitable academic backgrounds include a BSc or MSc in Civil, Environmental or Chemical Engineering.

Learning Objectives

After successfully completing the Sanitary Engineering specialization, graduates will be able to:

• Understand and explain the role of sanitation in the urban water cycle and its relation to public health and environment;

• Develop rational approaches towards sustainable wastewater management via pollution prevention, appropriate treatment, and resource recovery and reuse at both centralised and decentralised levels;

• Understand the relevant physical, chemical and biological processes and their mutual relationships within various sanitation components;

• Define and critically analyze, assess and evaluate various urban drainage and sewerage schemes, and wastewater, sludge and solid waste treatment systems;

• Analyze, synthesize, integrate, interpret, and discuss scientific and practical information in the context of preparing research and engineering projects including preparation of master plans, feasibility studies and preliminary designs;

• Apply modern tools for technology selection and to model sanitation components;

• Identify, develop and conduct independent research including field work, and laboratory research;

• Contribute to the development of innovative approaches to the provision of adequate and sustainable sanitation services in developing countries and countries in transition.

SPECIALIZATION IN URBAN WATER ENGINEERING AND MANAGEMENT

You will learn to deliver both water and wastewater services within the context of the urban water cycle, covering both technical and management aspects.

Prospective Students

This specialization is intended for students and professionals dealing with or interested in water and sanitation services and managing the urban water cycle. Suitable academic backgrounds include a BSc or MSc in Civil, Environmental or Chemical Engineering.

Learning Objectives

Graduates of the Urban Water Engineering and Management specialization will be able to:

• Describe the urban water cycle and its water system components, their characteristics and functioning within greater urban infrastructure systems;

• Understand urban water management problems including ability to identify water system deficiencies; deal with climatic and hydrologic uncertainties and/or extremes; institutional limitations; and work within a data-constrained environment;

• Make appropriate and critical use of methods, techniques and tools necessary to monitor, analyze and design urban water systems including water supply infrastructure, drinking water treatment and distribution, wastewater collection, treatment, transport and disposal systems and drainage systems;

• Understand water infrastructure/asset planning, financing and management, and utility management;

• Work with the concept of integrated water resources management (IWRM) and its application to a variety of water management problems at the urban catchment scale.

This specialization is a joint programme offered with the Asian Institute of Technology, Thailand.

This specialization can also be taken as a Double Degree programme. One of these is offered with Kwame Nkrumah University of Science and Technology, Ghana, the other with Universidad Del Valle, Colombia.

SPECIALIZATION IN WATER SUPPLY ENGINEERING

You will learn to deal with technical aspects of drinking water treatment and distribution in an integrated way, paying attention to the choice of technologies and tools, ranging from low-cost to advanced options.

Prospective Students

This specialization is designed for students and professionals interested in dealing with water collection, storage, treatment, transport and distribution. Suitable academic backgrounds include a BSc or MSc in Civil, Chemical, Environmental, Hydraulic or Mechanical Engineering.

Learning Objectives

After successfully completing the Water Supply Engineering specialization, graduates will be able to:

• Understand the structure of drinking water supply systems, including water transport, treatment and distribution;

• Name water quality criteria and standards, and their relation to public health, environment and urban water cycle;

• Understand physical, chemical and biological phenomena, and their mutual relationships, occurring within water supply systems;

• Describe water quality concepts and their effect on treatment process selection;

• Describe the interaction of water quality and the materials being used;

• Work with hydraulic concepts and their relationship to water transport in treatment plants, pipelines and distribution networks;

• Understand the importance and methods of operation and maintenance of water supply systems;

• Develop options for centralised and urban systems versus decentralised and rural systems;

• Design and rehabilitate raw water abstraction, transport, treatment and distribution processes and systems;

• Use statistical and modelling tools for simulation, prediction of performance and operation of water supply system components.

This specialization can also be taken as a Double Degree programme. One of these is offered with Kwame Nkrumah University of Science and Technology, Ghana, the other with Universidad Del Valle, Colombia.

CAREER

Graduates of the UWS programme start or resume a career dealing with water and sanitation services and managing the urban water cycle. Careers include working at:

• Public administration: central and local government (urban water and wastewater authorities, urban development ministries/authorities, water and environment ministries);

• Private sector: e.g. water supply companies, consulting engineering firms;

• Academia and research institutes;

• NGOs and international organizations (UN, Worldbank, OAS etc.).
The MSc programme in Water Management provides a unique combination of knowledge, skills and competencies to help students gain a comprehensive understanding of water resources and services at various scales. The programme is designed for professionals, preferably with relevant work experience in the water sector, involved in planning, regulating, and managing access, allocation and control of water resources and services at various scales as well as diplomats, UN staff or other professionals working for international organizations or NGOs who deal with water issues are welcome to apply.

Learning Objectives
After completing the successful completion of the programme, graduates will be able to:
• Describe the interrelationship of socio-natural processes;
• Discuss and compare theories and dimensions of conflict and its avoidance, management and resolution;
• Critically analyze water disputes (including actors, policies, legal, political and institutional aspects);
• Develop awareness of the historical and political factors that contribute to shaping water conflicts and war;
• Research the selection and application of appropriate methodologies and techniques of water conflict management tools and formulate well-founded conclusions and recommendations.

This specialization is a joint programme offered by the University for Peace, Costa Rica and Oregon State University, USA. See our website for specific information on the partners, programme structure and admission procedure of this option.

Specialization in Water Conflict and Peace
You will be provided with a theoretical and historical understanding of conflict and peace dynamics and frame issues of water security and cooperation in the broader context of understanding of human-water interactions. This involves the development of critical skills in the identification and analysis of water conflicts, conflict management and resolution and skills tools to promote/promote/water security and sustainable development too.

Prospective Students
The thematic profile is designed for engineers and natural relations experts and (social) geographers interested in local and international water management. Graduates specifically employed by river basin organizations, public and private water utilities, municipalities, ministries, international organizations, law firms, NGOs and academics.

Learning Objectives
After completing the conflict management thematic profile, graduates will be able to:
• Describe the main concepts and instruments for analyzing and influencing formal and informal arrangements over water for collaboration, including policies, laws and institutions, and how these concepts are dynamically linked with aquatic ecosystems;
• Explain the key concepts for integrated, multidisciplinary and interdisciplinary analyses of water systems and describe the challenges of such approaches at sector, intersectoral and institutional levels;
• Develop awareness of the historical and political factors that contribute to shaping water conflicts and war;
• Apply the main concepts and instruments for analyzing and influencing formal and informal arrangements over water for collaboration, including policies, laws and institutions, and how these concepts are dynamically linked with aquatic ecosystems;
• Explain the main concepts, models and tools in the context of natural resources and water in particular.

Career
Graduates of the VM programme start or resume a career dealing with issues of water management and governance jobs in the water sector or related sectors such as infrastructure, energy, agriculture or mining. Careers include:
• Public administration: central and local government (river basin organizations, urban water authorities, water boards, urban and rural development authorities);
• Private sector: e.g. consulting firms, private water utilities, municipalities, consultancy firms, NGOs and international organizations;
• NGOs and international organizations (UN, Worldbank, OAS, etc.);
• Private sector: e.g. consulting firms, private water utilities, municipalities, consultancy firms, NGOs and international organizations (UN, Worldbank, OAS, etc.).
SPECIALIZATION IN GROUNDWATER AND GLOBAL CHANGE - IMPACTS AND ADAPTATION

You will develop scientific and engineering knowledge needed to understand the human and socioeconomic issues caused by flooding while at the same time taking into account the social, economic, and ecological benefits from floods and the use of flood plains or coastal zones.

Prospective Students

This joint Erasmus Mundus program is open to students and professionals with a BSc, preferably in Geography, Water Resources, Economics, Environmental Sciences, Geology, Cryosphere, and Earth or other similar subject.

Learning Objectives

Upon successful completion of this specialization, graduates will be able to:

- Explain in detail how groundwater systems function;
- Describe the interactions between groundwater systems, climate, surface waters and land use;
- Use modeling tools for climate and groundwater systems;
- Identify the consequences of global and climate change impacts for groundwater management under uncertainty;
- Plan groundwater-related adaptation solutions for global change.

More information on the partners, programme structure and admission procedure is available at www.groundwatermaster.eu

SPECIALIZATION IN FLOOD RISK MANAGEMENT

You will develop scientific and engineering knowledge needed to reduce the human and socioeconomic losses caused by flooding while at the same time taking into account the social, economic, and ecological benefits from floods and the use of flood plains or coastal zones.

Prospective Students

This joint Erasmus Mundus program is open to students and professionals with a BSc, preferably in Civil Engineering or Environmental Engineering. There are also additional courses available for students with a Master's degree in Civil Engineering or Environmental Engineering.

Learning Objectives

Upon successful completion of this specialization, graduates will have:

- A broad and cross-boundary scientific knowledge on flood risk management;
- A comprehensive knowledge base and understanding of the current theory and practice relating to flooding and flood management;
- The fundamental knowledge leading to understanding of socio-economic issues related to flooding;
- A broad scientific knowledge about conservation, restoration and management measures to overcome challenges imposed on water by humans and by climate change;
- An extended knowledge of a basin-wide approach to flood risk management.

More information on the partners, programme structure and admission procedure is available at www.floodriskmaster.org

SPECIALIZATION IN HYDRAULIC ENGINEERING AND RIVER BASIN DEVELOPMENT

You will develop scientific and engineering knowledge needed to design and implement projects for sustainable use of river systems and their resources, learning about the design of hydraulic structures, modeling of the river and flood management for different scales of water projects (catchments, river stretches and floodplains).

Prospective Students

Students typically have a BSc degree in Civil Engineering with a hydraulic engineering background and, preferably, have worked for at least two years in the field of river engineering and river basin development. Knowledge in mathematics, statistics and physics is a prerequisite. Computer literacy is a valuable asset.

Learning Objectives

Upon successful completion of this specialization, graduates will be able to:

- Understand physical processes and natural phenomena in river basin systems, the effect of human interference in river basins, such as river structures and training works, and the management of floods and droughts;
- Master the major hydraulic methodologies and applications for the design of large river structures and river modeling techniques with regards to data collection, processing and analysis;
- Evaluate and analyze river basin systems and processes at a wide range of scales for the purpose of water resources, including morphological assessments, impact analysis of hydraulic structures and natural hazards assessment and mitigation taking into account relevant aspects of environmental, economical and social planning and management;
- Design and conduct hydraulic research, experiments and tests for both practical and scientific purposes;
- Apply and integrate relevant concepts and methodologies in the area of hydraulic, hydrological and geotechnical engineering and research as well as applying computational principles within the context of hydraulic engineering.

This specialization is also offered as a joint programme given with Hohai University, China.
SPECIALIZATION IN HYDROINFORMATICS - MODELLING AND INFORMATION SYSTEMS FOR WATER MANAGEMENT

You will be able to understand the main water-related processes and to develop and apply computer-based mathematical models, well-based information systems and integrated hydroinformatics systems for planning, designing or managing the aquatic environment. Typical examples of applications are: flood modelling and management, urban water systems rehabilitation, reservoir optimization, etc. You will also get acquainted with the best practices of water management, and develop skills to provide expert advice to managers and users of advanced tools.

Prospective Students

This specialization is intended for students and professionals dealing with or interested in hydrology, basin management, prediction and mitigation of floods and droughts, water resources assessment (quantity and quality), water supply, hydropower, land use and development, environmental survey and planning, and other related fields. Suitable academic backgrounds include a BSc or MSc in Civil or Agricultural Engineering, Earth Sciences, Environmental Sciences, or Physics.

Learning Objectives

Upon successful completion of this specialization, graduates will be able to:

• Understand the fundamentals of a range of physical processes, advanced modelling techniques and information technology for water management;
• Select and use simulation models applied to water-based systems in a wide variety of hydraulic, hydrologic and environmental engineering situations;
• Use current software tools, and know their advantages and limitations;
• Design, develop and integrate decision-support systems and tools;
• Provide advice to managers and users of advanced tools;
• Understand and practice collaborative work, making use of Internet-based platforms.

SPECIALIZATION IN HYDROLOGY AND WATER RESOURCES

You will deal with surface and groundwater, addressing both water quantity and quality, learning to understand human influence on the hydrological system and apply tools, such as modelling, for the proper integration of hydrological knowledge and analysis in water resources planning and management.

Prospective Students

This specialization is intended for students and professionals dealing with or interested in hydrology, basin management, prediction and mitigation of floods and droughts, water resources assessment (quantity and quality), water supply, hydropower, land use and development, environmental survey and planning, and other related fields. Suitable academic backgrounds include a BSc or MSc in Civil or Agricultural Engineering, Earth Sciences, Environmental Sciences, or Physics.

Learning Objectives

Upon successful completion of this specialization, graduates will be able to:

• Have in-depth understanding of theories and concepts in surface and subsurface hydrology, the physical, chemical and biological interactions between the hydrosphere, the lithosphere, the biosphere and the atmosphere;
• Be able to apply and integrate relevant physical, chemical, applied mathematical, computational and earth-scientific principles and concepts;
• Master the major hydrological methodologies and applications with regard to water quantity and quality, including techniques for data collection, processing and analysis, and the application of catchment hydrological modelling and aquifer modelling techniques;
• Be able to evaluate and analyse hydrological systems and processes at a wide range of scales in both space and time for the purpose of water resources assessment, and environmental planning and management;
• Be able to design and conduct hydrological research and experiments independently or within a team;
• Have thorough awareness of natural and human-induced variations of hydrological systems;
• Be able to co-operate within a multidisciplinary and interdisciplinary framework with due consideration of ethical and social aspects related to the application of their knowledge and skills.

SPECIALIZATION IN LAND AND WATER DEVELOPMENT FOR FOOD SECURITY

You will learn to plan, design, operate and maintain land and water resources and water-related infrastructure, emphasising the modernisation of irrigation, drainage and flood protection schemes, and land use for agriculture.

Prospective Students

This specialization is intended for students and professionals concerned with the development, adaptation and management of land and water resources for the different types of land use, with a focus on agricultural purposes. The typical student has a BSc degree in Agricultural or Civil Engineering with a hydraulic background, and preferably has worked in professional practice or in a university or research environment in irrigation, drainage or land and water development for at least two years.

Learning Objectives

Upon successful completion of this specialization, graduates will be able to:

• Explain the latest concepts and theories of irrigation, drainage, flood protection, land reclamation and rehabilitation technologies for sustainable development;
• Identify the cross-sectoral linkages comprehending wider aspects of society, economy and the environment;
• Apply the latest hydraulic engineering and hydrological methods in planning, design and implementation of irrigation, drainage and flood protection schemes, independently or in a multidisciplinary team;
• Evaluate alternative land and water development options for areas under different land uses and assess their technical, economic and environmental feasibility;
• Support development, system managers and water users in the participatory development and management of irrigation, drainage and flood protection schemes for their planning, design, operation and maintenance, financing and performance assessment;
• Demonstrate knowledge and understanding of contemporary research issues in the field of land and water development.

This specialization can also be taken as a joint programme. One of these is offered with Hohai University, China, and another with Universidad Católica, Bolivia.

SPECIALIZATIONS

MSc PROGRAMME IN WATER SCIENCE AND ENGINEERING

ONLINE COURSES 2017

www.unesco-ihe.org/online-courses

www.unesco-ihe.org/gpdp

GRADUATE PROFESSIONAL DIPLOMA PROGRAMME

www.unesco-ihe.org/programmes

Dates are subject to change - please check the website for updates.

Graduate Professional Diploma Programme

Online courses offered by UNESCO-IHE as part of the GPDP (duration varies between 12 to 18 weeks).

The minimum study load for obtaining a diploma is 20 ECTS credit points, which equals a workload of 560 hours. ECTS points vary from 3 to 6 per course. Participants select courses among clusters belonging to different tracks: Sanitation and Sanitary Engineering and Four newly developed tracks.

SPEAKERS

Sanitation and Urban Water Engineering

Water Supply and Sanitation

Water and Wastewater Treatment Technology

Flood Risk Management and Urban Water Networks

Cleaner Production and Resources Management

Biological Wastewater Treatment

Urban Drainage and Sewerage

Surface Water Treatment

Fecal Sludge Management

Flood Modelling for Management

Industrial Resource Management and Cleaner Production

Grey Water Management, Treatment and Use

Industrial Effluent Treatment

Solid Waste Management

Water Transport and Distribution

Decentral Support Systems in River Basin Management

Dates are subject to change - please check the website for updates.

Dates are subject to change - please check the website for updates.

Participants

5 Jan - 13 Feb

9 Jan - 11 Feb

9 Jan - 12 Feb

9 Jan - 23 Feb

10 Jan - 10 Feb

6 Mar - 30 Jun

10 Mar - 17 Apr

8 May - 8 Sep

15 May - 8 Sep

8 May - 8 Sep

17 May - 8 Sep

8 May - 8 Sep

24 May - 8 Sep

12 May - 18 Aug

9 May - 17 Aug

8 May - 8 Sep

23 June - 7 Sep

8 Jul - 24 Aug

8 Jul - 24 Aug

17 Sep - 30 Nov

12 Jan - 27 Mar

30 Jan - 27 Apr

29 Apr - 17 Jul

12 Jul - 27 Sep

9 Jan - 12 May

9 Jan - 12 May
SHORT COURSES 2017

ENVIRONMENTAL SCIENCE

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Resource Management and Cleaner Production</td>
<td>13/Feb/17 - 3/Mar/17</td>
</tr>
<tr>
<td>Water Quality Assessment</td>
<td>6/Mar/17 - 24/Mar/17</td>
</tr>
<tr>
<td>Constructed Wetlands for Wastewater Treatment</td>
<td>3/Apr/17 - 21/Apr/17</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>3/Apr/17 - 21/Apr/17</td>
</tr>
<tr>
<td>Water and Environmental Policy Making</td>
<td>3/Apr/17 - 13/Apr/17</td>
</tr>
<tr>
<td>Nanotechnology for Water and Wastewater Treatment</td>
<td>3/Apr/17 - 21/Apr/17</td>
</tr>
<tr>
<td>Environmental Monitoring and Modelling</td>
<td>24/Apr/17 - 12/May/17</td>
</tr>
<tr>
<td>Environmental Planning and Implementation</td>
<td>24/Apr/17 - 12/May/17</td>
</tr>
<tr>
<td>Data Analysis and Modelling for Aquatic Ecosystems</td>
<td>22/May/17 - 9/Jun/17</td>
</tr>
<tr>
<td>Aquatic Ecosystems: Processes and Applications</td>
<td>12/Jun/17 - 30/Jun/17</td>
</tr>
<tr>
<td>Environmental Assessment for Water-related Policies and Developments</td>
<td>12/Jun/17 - 30/Jun/17</td>
</tr>
<tr>
<td>Industrial Efficient Treatment and Residuals Management</td>
<td>12/Jun/17 - 30/Jun/17</td>
</tr>
<tr>
<td>Irrigation as a Tool to Adaptation to Climate Change</td>
<td>3/Jul/17 - 21/Jul/17</td>
</tr>
<tr>
<td>Wetlands and River Basin Management</td>
<td>3/Jul/17 - 21/Jul/17</td>
</tr>
<tr>
<td>Wetlands for Livelihoods and Conservation</td>
<td>3/Jul/17 - 21/Jul/17</td>
</tr>
<tr>
<td>Solid Waste Management</td>
<td>3/Jul/17 - 21/Jul/17</td>
</tr>
<tr>
<td>Hazardous Waste Management</td>
<td>3/Jul/17 - 21/Jul/17</td>
</tr>
</tbody>
</table>

URBAN WATER AND SANITATION

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Water Treatment I</td>
<td>18/Jan/17 - 3/Feb/17</td>
</tr>
<tr>
<td>Urban Drainage and Sewerage</td>
<td>18/Jan/17 - 3/Feb/17</td>
</tr>
<tr>
<td>Asset Management</td>
<td>13/Feb/17 - 3/Mar/17</td>
</tr>
<tr>
<td>Conventional Wastewater Treatment</td>
<td>13/Feb/17 - 3/Mar/17</td>
</tr>
<tr>
<td>Surface Water Treatment II</td>
<td>13/Feb/17 - 3/Mar/17</td>
</tr>
<tr>
<td>Groundwater Resources and Treatment</td>
<td>6/Mar/17 - 24/Mar/17</td>
</tr>
<tr>
<td>Resource Oriented Wastewater Treatment and Sanitation</td>
<td>6/Mar/17 - 24/Mar/17</td>
</tr>
<tr>
<td>Anarctic Wastewater Treatment</td>
<td>6/Mar/17 - 15/Mar/17</td>
</tr>
<tr>
<td>Wastewater Treatment Plants Design and Engineering</td>
<td>3/Apr/17 - 21/Apr/17</td>
</tr>
<tr>
<td>Water Transport and Distribution</td>
<td>3/Apr/17 - 21/Apr/17</td>
</tr>
<tr>
<td>Advanced Water Treatment and Re-use</td>
<td>24/Apr/17 - 12/May/17</td>
</tr>
<tr>
<td>Modelling Wastewater Treatment Processes and Plants</td>
<td>24/Apr/17 - 12/May/17</td>
</tr>
<tr>
<td>Industrial Efficient Treatment and Residuals Management</td>
<td>12/Jun/17 - 30/Jun/17</td>
</tr>
<tr>
<td>Water Treatment Processes and Plants</td>
<td>12/Jun/17 - 30/Jun/17</td>
</tr>
<tr>
<td>Advanced Water Transport and Distribution</td>
<td>3/Jul/17 - 21/Jul/17</td>
</tr>
<tr>
<td>Decentralised Water Supply and Sanitation</td>
<td>3/Jul/17 - 21/Jul/17</td>
</tr>
<tr>
<td>Faecal Sludge Management</td>
<td>3/Jul/17 - 21/Jul/17</td>
</tr>
</tbody>
</table>

WATER SCIENCE AND ENGINEERING

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Planning and Infrastructure Design</td>
<td>18/Jan/17 - 3/Feb/17</td>
</tr>
<tr>
<td>Coastal Systems</td>
<td>13/Feb/17 - 3/Mar/17</td>
</tr>
<tr>
<td>Coastal and Port Structures</td>
<td>6/Mar/17 - 24/Mar/17</td>
</tr>
<tr>
<td>Computational Intelligence and Operational Water Management</td>
<td>6/Mar/17 - 24/Mar/17</td>
</tr>
<tr>
<td>Trace Hydrology and Flow Systems Analysis</td>
<td>6/Mar/17 - 24/Mar/17</td>
</tr>
<tr>
<td>Hydropower Water Conduit Design</td>
<td>6/Mar/17 - 24/Mar/17</td>
</tr>
<tr>
<td>Groundwater Data Collection and Interpretation</td>
<td>3/Apr/17 - 21/Apr/17</td>
</tr>
<tr>
<td>Hydrological Data Collection and Processing</td>
<td>3/Apr/17 - 21/Apr/17</td>
</tr>
<tr>
<td>River Basin Modelling</td>
<td>3/Apr/17 - 21/Apr/17</td>
</tr>
<tr>
<td>Integrated Coastal Zone Management</td>
<td>24/Apr/17 - 4/May/17</td>
</tr>
<tr>
<td>Integrated Hydrological and River Modelling</td>
<td>24/Apr/17 - 12/May/17</td>
</tr>
<tr>
<td>International Port Seminar</td>
<td>24/Apr/17 - 12/May/17</td>
</tr>
<tr>
<td>Management of Irrigation and Drainage Systems</td>
<td>24/Apr/17 - 12/May/17</td>
</tr>
<tr>
<td>Planning and Delivery of Flood Resilience</td>
<td>24/Apr/17 - 12/May/17</td>
</tr>
<tr>
<td>River Flood Analysis and Modelling</td>
<td>24/Apr/17 - 12/May/17</td>
</tr>
<tr>
<td>Urban Flood Management and Disaster Risk Mitigation</td>
<td>24/Apr/17 - 12/May/17</td>
</tr>
<tr>
<td>Design of Hydropower Schemes</td>
<td>8/May/17 - 12/May/17</td>
</tr>
<tr>
<td>Applied Groundwater Modelling</td>
<td>12/May/17 - 30/Jun/17</td>
</tr>
<tr>
<td>Flood Risk Management</td>
<td>12/May/17 - 30/Jun/17</td>
</tr>
<tr>
<td>Urban Water Systems</td>
<td>12/May/17 - 30/Jun/17</td>
</tr>
<tr>
<td>Water Sensitive Cities</td>
<td>3/Jun/17 - 21/Jun/17</td>
</tr>
<tr>
<td>World History of Water Management</td>
<td>3/Jun/17 - 21/Jun/17</td>
</tr>
<tr>
<td>Data Acquisition, Preprocessing and Modeling using HEC-RAS</td>
<td>18/Sept/17 - 29/Sept/17</td>
</tr>
<tr>
<td>Data Acquisition, Preprocessing and Modeling using PCRaster Python</td>
<td>18/Sept/17 - 29/Sept/17</td>
</tr>
<tr>
<td>Data Acquisition, Preprocessing and Modeling using SWAT</td>
<td>18/Sept/17 - 29/Sept/17</td>
</tr>
<tr>
<td>Small Hydropower Development</td>
<td>18/Sept/17 - 29/Sept/17</td>
</tr>
<tr>
<td>Morphological Modeling using SWAT</td>
<td>18/Sept/17 - 29/Sept/17</td>
</tr>
<tr>
<td>Open Source Software for Preprocessing GIS Data for Hydrological Models</td>
<td>18/Sept/17 - 29/Sept/17</td>
</tr>
<tr>
<td>Environmental Modelling using PCRaster</td>
<td>25/Sept/17 - 29/Sept/17</td>
</tr>
<tr>
<td>Hydraulic Modelling using HEC-RAS</td>
<td>25/Sept/17 - 29/Sept/17</td>
</tr>
<tr>
<td>River Basin Modelling using SWAT</td>
<td>25/Sept/17 - 29/Sept/17</td>
</tr>
<tr>
<td>GIS and Remote Sensing Applications for the Water Sector</td>
<td>30/Oct/17 - 10/Nov/17</td>
</tr>
<tr>
<td>Where there is little data: How to estimate design variables in poorly gauged basins</td>
<td>30/Oct/17 - 10/Nov/17</td>
</tr>
</tbody>
</table>

WATER MANAGEMENT

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Economics</td>
<td>18/Jan/17 - 3/Feb/17</td>
</tr>
<tr>
<td>Water and Environmental Law</td>
<td>13/Feb/17 - 3/Mar/17</td>
</tr>
<tr>
<td>Managing Water Organisations</td>
<td>6/Mar/17 - 24/Mar/17</td>
</tr>
<tr>
<td>Water Conflict Management I</td>
<td>6/Mar/17 - 24/Mar/17</td>
</tr>
<tr>
<td>Water Resources Assessment</td>
<td>6/Mar/17 - 24/Mar/17</td>
</tr>
<tr>
<td>Water Conflict Management II</td>
<td>3/Apr/17 - 21/Apr/17</td>
</tr>
<tr>
<td>Financial Management in the Water Sector</td>
<td>24/Apr/17 - 12/May/17</td>
</tr>
<tr>
<td>Water Resources Planning</td>
<td>24/Apr/17 - 12/May/17</td>
</tr>
<tr>
<td>Partnerships for Water Supply and Sanitation</td>
<td>10/Jul/17 - 30/Jul/17</td>
</tr>
</tbody>
</table>

Dates are subject to change - please check the website for updates.
UNESCO-IHE Institute for Water Education is the largest international graduate water education facility in the world and it is based in Delft, the Netherlands. The Institute confers fully accredited MSc degrees, and PhD degrees in collaboration with partners. Over 15,000 water professionals from more than 160 mainly developing countries and countries in transition have been educated at the Institute.

The mission of UNESCO-IHE is to contribute to the education and training of professionals, to expand the knowledge base through research and to build the capacity of sector organizations, knowledge centres and other institutions active in the fields of water, the environment and infrastructure in developing countries and countries in transition.